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The complex shear moduli of some ordinary liquids and their dependence on the shear deformation angle 
have been measured by the resonance method at a frequency of 73.5 kHz. From the results obtained, it is 
concluded that liquids exhibit a low-frequency shear elasticity---a property unknown before--which is 
associated with collective interactions of liquid molecules. 
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INTRODUCTION 

The theory of the liquid state has conventionally been 
considered to be lagging considerably compared with the 
theories of gases and solids. This viewpoint remains valid 
in many respects at the present time, with the exception of 
the application of existing statistical theory to simple 
liquids. As regards multi-atomic liquids, the successes of 
theory are rather few, and the question of their true 
structure remains in many respects still to be resolved. 
That a low-frequency shear modulus of liquids has been 
detected 1-3 proves this, though, in accordance with 
existing concepts, it could only be detected at frequencies 
higher by 5-6 orders of magnitude. 

The relaxation period z, i.e. the time of conservation of 
non-equilibrium states, in the theories of the liquid state 
of Frenkel ¢ and others 5'6, is estimated on the basis of the 
self-diffusion rate, by equating that period to the time of 
settled existence of separate molecules. In the case of low- 
viscosity liquids, such calculations give values of r of the 
order of 10-1 o s. However, in a number of cases collective 
effects may be of significance in condensed media, these 
effects depending on the mutual arrangement and 
interactions of groups of molecules. Relaxation of the 
non-equilibrium state of a configuration of a large 
number of particles requires the concordant displacement 
and variation in the orientation of many molecules. The 
probability of such a concordant displacement may be 
many times smaller than that of the displacement of one 
molecule for the same period of time. Therefore, the 
relaxation time of such collective non-equilibrium states 
may exceed by many orders of magnitude the time of the 
settled existence of individual molecules. That the 
modulus of elasticity of liquids has been detected at a 
shear vibration frequency of about 105 Hz is probably 
associated with just that circumstance. 

The presence of shear elasticity at such low frequencies 
proves that in liquids there exists (up to now unknown) 
low-frequency, viscoelastic relaxation, which is probably 
associated with collective interactions. This property is 
inherent to all liquids, without exception, irrespective of 
their viscosity and polarity. This circumstance is 
obviously of great significance for understanding the 
proper nature of liquids, and thorough investigation of 
that property (which is in direct relation to their 

structure) would seem to be very useful. 
The shear elasticity of liquids has been investigated 

already. But those investigations concerned very viscous, 
supercooled liquids. For instance, in the work of 
Volarovich et al. 7, the moduli of shear elasticity of 
colophony (rosin), guaiac gum and a number of other 
substances were measured within their softening range. 
Kornfeld 8 carried out a similar investigation. 

In 1947-49, Mason and coworkers investigated the 
shear elasticity of liquids. They suggested two original 
measurement methods 9. The first is based on the 
generation of torsional oscillations of a piezo-quartz 
cylinder immersed in a liquid, while the other is based on 
measuring the amplitude and phase of an elastic 
transverse wave as reflected by a solid-liquid interface. 
The second method, which is suitable for measuring the 
shear elasticity at high frequencies, has been developed to 
a larger extent. Mason et al. 's work mainly concerned 
investigation of the elastic properties of viscous polymers. 
Attempts to apply that method to low-viscosity liquids 
yielded negative results. 

Litovitz and coworkers were the first to apply Mason's 
method to the investigation of the dynamic properties of 
ordinary high-viscosity liquids 1 o. McSkimin and 
Andreatch 11 improved the method by enhancing its 
sensitivity through application of multiple reflections of 
pulses (momenta) of transverse waves by a solid-liquid 
interface. Those authors investigated a number of 
ordinary liquids at a frequency of shear waves of about 
40 MHz, and obtained conflicting results. They also came 
to the conclusion that liquids such as water, carbon 
tetrachloride, dibutyl phthalate, etc., do not possess any 
shear modulus. Positive results were obtained when they 
investigated polymer solutions in different solvents. Of 
great interest also are the works of Barlow and Lamb and 
coworkers, who investigated the dynamic properties of 
different lubrication oils, liquid crystals and other 
liquids 12-~7 at high frequencies. A review article is 
presents a detailed analysis of  those research works. 
Further work 19 presents a theoretical consideration of 
different models of the viscoelastic behaviour of liquids. 

All the above and subsequent works involving the 
investigation of the shear dynamic properties of liquids 
were carried out with highly viscous and supercooled 
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Figure 1 Piezo-quartz with an additional link: 1, piezo-quartz; 2, 
coverplate; 3, liquid film 

liquids at frequencies of scores of megahertz. Those 
research works are connected with investigation of the 
viscoelastic relaxation associated with the character of 
thermal motion of individual molecules of a liquid. In 
particular, Barlow and Erginsav 2° give a comparison of 
the viscoelastic properties of benzyl benzoate with its 
dielectric properties, as well as with data on light 
scattering. Gray et al. 21 investigated the viscoelastic 
behaviour of fused polystyrene at different frequencies 
within the vitrification temperature range. At low 
frequencies, a technique based on torsional oscillations 
was applied. The authors have shown that the viscoelastic 
behaviour of low-molecular-weight polystyrene solutions 
is the same as that of polymeric liquids. 

A method of reflection of high-frequency transverse 
waves by a solid-liquid interface was applied to 
investigate low-viscosity liquids and yielded negative 
results. This can be explained by the low sensitivity of the 
method, which depends on the relative values of the shear 
elasticity of the solid and the liquid investigated differing 
by many orders of magnitude. 

A resonance measurement method was used 
elsewhere ~-a to detect the low-frequency shear elasticity 
of liquids. The method is based on investigation of the 
influence of a liquid film in contact with a horizontal 
lateral surface of piezo-quartz at one of its ends (Figure 1) 
and covered by a solid coverplate on the crystal 
oscillation parameters. When the piezo-quartz is 
oscillating longitudinally, the liquid film undergoes shear 
deformation. At this juncture, the coverplate, in view of 
the weak bond due to the liquid film, is considered to be 
practically at rest, and the thickness of the liquid 
interlayer is considered to be much smaller than the 
length of a shear wave. 

Under these conditions, if the liquid possesses the shear 
bulk modulus, the piezo-quartz resonance frequency 
should increase, doing this inversely proportional to the 
liquid film thickness. Just this behaviour was detected I 3. 
However, subsequent experiments have demonstrated 
that the shear moduli measured are influenced very 
strongly by a number of factors, such as electrical 
induction (sighting) and the existence of a normal 
oscillation component on the working surface, as well as 
the cleanliness of the latter, The last two factors cause a 
considerable underestimation of the shear moduli being 
measured; therefore, in later research 22"2a taking into 

account the aforesaid factors, higher shear moduli of 
liquids that are closer to the true ones have been obtained. 

The dependence of the effective shear modulus of 
liquids on the deformation has been investigated23, and it 
has been shown that the elasticity retains its constant 
value at small shear angles. The existence of a low- 
frequency shear elasticity of liquids presupposes the 
possibility of shear waves propagating in those liquids. It 
has been shown 24 that the shear elasticity of a number of 
liquids can be measured under conditions of complete 
decay of shear waves in a sufficiently thick layer of liquid. 
Finally, the shear elasticity has been determined by 
measuring the length of shear waves zS. The present work 
deals with the measurement of the complex shear 
modulus of liquids and its dependence on the shear 
deformation angle. 

THEORY 

Below, we shall briefly discuss the derivation of a general 
formula expressing the complex shift of the resonance 
frequency of piezo-quartz under the action of an 
additional bond provided by a liquid film covered by a 
coverplate. For this purpose, it is necessary to determine 
the acoustic impedances of liquid ZI and piezo-quartz Zq 
by considering the interaction forces in the given system, 
and to equate them to one another, which is possible in 
the case of a weak bond provided by a liquid film. Owing 
to the weakness of this bond, the piezo-quartz coverplate 
almost does not undergo any shear deformations. 

We shall set the origin of coordinates in the middle of 
the horizontal lateral surface of the piezo-quartz and we 
shall confine our consideration to one half of it. 

The impedance of piezo-quartz is equal to the ratio 
between the force exerted by piezo-quartz and acting on 
the liquid, and the velocity of piezo-quartz particles at its 
end: 

(~ + 2~)(2(~u/~x)lx : ,  

Z q  - -  ( ~ u / ~ t ) l x  = / ( 1 )  

Here 2 and/J are the Lam~ coefficients, Q is the cross- 
section of piezo-quartz, l is its half-length, and u is the 
displacement of quartz particles as a function of time t 
and distance x from the piezo-quartz centre (see Figure 1). 
Assuming U=Uosin(K*x)l i°', where u is the cyclic 
frequency, Uo is the amplitude of piezo-quartz oscillations 
at its end, and K* is its complex wavenumber, we have for 
the impedance of piezo-quartz the expression: 

Z . ,  l '  " 

R i 0 I P  rqA, 
i i M i f 

K 1 K2 

Figure 2 Schematic diagram of the set-up for determination of the 
piezo-quartz oscillation amplitudes: L, gas laser; RI and R z turnable 
prisms; K1, collimator; P, piezo-quartz; M, second mirror; K2, 
autocoUimator 
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Figure 3 Dependence of the amplitude of oscillations of the piezo- 
quartz on the voltage taken off it 

Zq = icQp cot(K*/) (2) 

where c is the velocity of longitudinal waves in piezo- 
quartz and p is its density. 

The impedance of liquid is equal to the ratio between 
the force exerted by liquid and acting on piezo-quartz, 
and the velocity of liquid particles at z=0 ,  where z is the 
distance from the piezo-quartz surface: 

z ,  - s G  * [ ~ (z, t ) /oz]  Iz = o (3 )  

[el(z, t)/&] I~ = o 

where S is the contact area (the area of the coverplate 
base) and G* is the complex shear modulus of the liquid. 

The expression for the horizontal shift of liquid 
particles ~(z, t), which is the sum of the direct wave and 
that reflected from the coverplate, is as follows: 

~(z, t) = A(I -i~*z --l-@*(2n- z)-,,*])/-i,o, (4) 

where x* is the complex wavenumber of the liquid, H is 
the interlayer thickness and ~p* is the complex phaseshift 
when the wave is reflected from the liquid-coverplate 
interface. It follows from the boundary conditions that 
the amplitude A is: 

Uo 
A -  1 -/-i(2H~c*-~,*) 

From the equation of motion of the coverplate of mass 
m under the action of the force exerted by liquid, we 
obtain: 

me) 2 - iSx*G* 
q~* = i  In mco2 + iSx*G* (5) 

whence it follows that the phaseshift depends on the 
coverplate mass and the properties of the liquid. 

Determining the derivatives with respect to z and t 
from formula (4) and substituting them into (3), we obtain 
for the impedance of liquid the expression: 

Sx*G* 1 +/-i(2x*n-u,*) 
Z l -  CO 1--  1_i(2~. H_,.) (6) 
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Equating (2) and (6) and bearing in mind that 

(K*  - A o * / c ) l  = ~/2 

we obtain for the complex frequency shift Am* the 
expression: 

2Sx*G* 1 +cos(2x*H-~p*) 
ACO* = - -  (7) 

Me) sin(2x*H - cp*) 

where M = 21Qp is the piezo-quartz mass. 
Expression (7) is simplified to the utmost by assuming 

that, owing to the weakness of the bond provided by the 
liquid film, when piezo-quartz is oscillating, the 
coverplate is practically at rest, and that the film thickness 
is much smaller than the length of the shear waves in the 
liquid. Under the conditions of our experiments the 
validity of these assumptions was assured. Taking into 
account that the contact area is only at one end of the 
horizontal surface of piezo-quartz, we shall obtain from 
(7), when passing over to a linear frequency f and 
complex frequency shift Af, the following expression for 
the complex shear modulus: 

G*=4rc2Mf Af*H/S (8) 

It follows from this formula that, when the liquid has a 
bulk shear modulus, both real Af' and imaginary Af" 
frequency shifts should be proportional to the reciprocal 
of the film thickness. The imaginary frequency shift is 
equal to the variation in the damping of the oscillating 
system: 

A f t =  Ace/2 (9) 

where Ace is the variation in the width of the resonance 
curve of piezo-quartz. The mechanical loss tangent is 
equal to: 
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Dependence of the real piezo-quartz frequency shift on the 
shear deformation angle for diethylene glycol films of different 
thicknesses: A, 4.75,um; B, 3.05pm; C, 1.173/tm; D, 1.37#m; E, 
1.05/~m 
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Figure 5 Dependence of the real piezo-quartz frequency shift on the 
inverse film thickness for different shear deformation angles: A, 0 and 
10'; B, 34'; C, 1°24 ' 

G" Af" A~t 
tan 0 . . . .  (10) 

G ' A f ' 2 A f '  

EXPERIMENTAL METHODS 

When investigating the shear modulus of liquids as a 
function of the shear deformation angle, it is important to 
measure the absolute values of the oscillation amplitudes 
of piezo-quartz as a function of the voltage taken off it. 
This dependence is determined by the given experimental 
conditions, in particular by the dimensions of the 
electrodes, the size of the air gap between the electrodes 
and the piezo-quartz, etc. To determine that dependence, 
we used the Fabry-Perot interferometer method. A silver 
film having a high reflection coefficient was applied to the 
right-hand end face of the piezo-quartz, which served as 
one of the mirrors of the interferometer. The second 
mirror of the interferometer, in the form of a fiat glass 
plate, was coated with silver by thermal evaporation in 
vacuo, using the technique of producing films for 
multiple-beam interferometry. A Ne-He gas laser with 
wavelength 2=6328 A was used as a monochromatic 
light source. Figure 2 represents the set-up for 
determining the oscillation amplitude of piezo-quartz. 
The gas laser L emits light which, after two reflections on 
prisms R 1 and R 2 and having passed through the 
collimator K1, impinges on the Fabry-Perot 
interferometer consisting of piezo-quartz P and fiat 
mirror M. 

Having passed through the interferometer, the light 
beam falls on the autocollimator K 2, by means of which it 
is possible to observe visually the interference pattern and 
to measure directly the angles ~p between the normal to 
the interferometer mirror and the beam forming light- 
coloured rings. The angles cp satisfy the condition: 

2h = m2 cos ~o (11) 

Here h is the spacing between the interferometer mirrors 
and m is the interference order. 

The second mirror of the interferometer is secured in a 
special mounting provided with micrometer screws that 
allow adjustment of the mirror into a plane-parallel 
position with regard to the piezo-quartz end face. The 
quartz holder is rigidly attached to the holder of the 
second mirror mounting, to eliminate any vibrations. 

When the piezo-quartz is oscillating, the distance h 
varies periodically, so that the interference rings widen in 
proportion to the piezo-quartz amplitude. It follows from 
(11) that, under conditions in which the angle ~o is 
sufficiently small, the piezo-quartz amplitude is 
determined by the expression: 

A=½mkq9 A~o (12) 

where A~0 is the increase in the width of an interference 
ring of order m, expressed in radians. 

Figure 3 shows the dependence of the piezo-quartz 
amplitude upon the voltage taken off it, obtained by the 
method described. The dependence, as it should be, is 
linear and converges towards the origin. The graph 
shown in Figure 3 allows the piezo-quartz oscillation 
amplitude to be known at any desired moment. 

In the present work we used a piezo-quartz crystal of 
18.5 ° cut, which practically oscillates only lengthwise. 
Moreover, crystals of the above mentioned type possess a 
particularly small value of the normal-directed 
component of vibration on the active horizontal face, 
whose presence does not have an appreciable effect upon 
the experimental results. The piezo-quartz mass was 
equal to 6.7 g and the resonance frequency was 73.5 kHz. 
The area of the coverplate base was equal to 0.2 cm 2, and 
its mass was 0.25 g. 

Piezo-quartz is mounted in a special holder between 
two steel needles along a nodal line passing through its 
middle. Since piezo-quartz frequently requires special 
cleaning, we used electrodes with an air gap. 

To excite the piezo-quartz to the main (basic) 
resonance frequency, a stabilized generator was used, 
whose frequency could be controllably varied. The range 
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Figure 6 Dependence of the imaginary piezo-quartz frequency shift on 
the shear deformation angle for the same thicknesses ofdiethylene glycol 
films: A, 4.75#m; B, 3.05/tm; C, 1.73#m; D, 1.37 #m; E, 1.05 #m 
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Figure 7 Dependence of the imaginary piezo-quartz frequency shift on 
the inverse film thickness for different shear deformation angles: A, 0 
and 10'; B, 34'; C, 1°24 ' 

of its gradual variation was fairly wide, so that the 
complex shift of the piezo-quartz resonance frequency 
could be measured. 

Special attention was given to the cleanliness of the 
active surfaces and the purity of the liquids being 
investigated. The surfaces of piezo-quartz and coverplate 
were previously washed in organic solvents, treated in a 
chromic mixture and then subjected to cleaning in a glow 
discharge. A lengthy steaming of the surfaces was also 
resorted to. The liquids to be investigated were 
thoroughly cleaned by known methods. 

The measurement technique was as follows. 
Immediately after cleaning, the liquid to be investigated 
in the form of a small droplet was applied to the active 
piezo-quartz surface by means of a clean glass rod and 
carefully covered with the coverplate. After fixing the 
piezo-quartz together with the coverplate in the quartz 
holder, the film thickness in the gap was determined by an 
optical method. During the experiment, the film thickness 
was controlled by repeated measurements. A uniform film 
thickness was achieved by using a special device for 
rotating the coverplate about its own vertical axis. 

After determining the film thickness, we measured the 
dependence of the piezo-quartz resonance frequency on 
the voltage taken off it, and simultaneously the width of 
the resonance curve. We repeated this procedure for 
various thicknesses of liquid film being investigated. The 
film thickness was varied by displacing part of the liquid 
from the gap. The frequency shift measurement error did 
not exceed about l Hz. The accuracy of the measurement 
of the thickness of a liquid interlayer was equal to 
0.02 #m. If the shear deformation angle amplitude has a 
small value, it is proportional to the ratio between the 
piezo-quartz amplitude and the thickness of the liquid 
film. In the present experiments the deformation angle 
did not exceed 3 ° to 4 °. Therefore, the ratio A/H may 
serve as a measure of angular shear deformation 
amplitude ~. However, to facilitate plotting we will 
present the experimental results as a function of the 
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square root of that ratio. 

EXPERIMENTAL RESULTS 

Now, let us discuss the experimental results. Figure 4 
shows the dependence of the real shift of the piezo-quartz 
frequency on the shear deformation angle for various 
thicknesses ofa diethylene glycol film. These dependences 
have several peculiar features. First, at small shear angles 
they show horizontal sections corresponding to the linear 
elasticity of liquid. In this region, the shear stress is 
proportional to the shear deformation. The second 
peculiar feature is that the violation of the proportionality 
between the elastic stress and the shear deformation value 
does not depend upon the film thickness, and is observed 
at the same shear angle ~'K, which will be termed the 
critical shear angle and correspnds to a certain critical 
shear stress. Another peculiarity of the curves shown in 
Figure 4 is that the limit of linear elasticity is rather sharp. 
And finally, all the curves possess inflection points 
corresponding to the same shear deformation angle. At this 
angle, the steepness of the variation in the real frequency 
shift is maximum and, hence, so is the steepness of 
variations in the shear elasticity of liquid. 

Figure 5 shows the dependences of the real frequency 
shift upon the inverse thickness of films for various shear 
angles. Curve A corresponds to the linear elasticity 
region. It is evident that the frequency shift is 
proportional to the inverse thickness of the film. This 
indicates that the liquid possesses bulk shear elasticity 
which does not depend upon the film thickness (at least 
with the thickness used in the present work). 

Similar dependences, but having smaller slopes, are 
obtained with other shear deformation angles. 
Consequently, a definite value of shear elasticity 
corresponds to each shear angle. 

Figure 6 shows the dependences of the imaginary 
frequency shift of piezo-quartz upon the shear 
deformation angle for various thicknesses of diethylene 
glycol films. It is evident that the damping within the 
linear region also remains constant. The maximum 
damping is observed at the same shear angle for all film 
thicknesses, this angle being equal to the angle of the 
greatest steepness of the variation in the real frequency 
shift. That angle is characteristic of every liquid and will, 
therefore, be designated by ~ .  For diethylene glycol 
• p ~ 42'. 

Figure 7 shows the dependences of the imaginary 
frequency shift upon the inverse thickness at various shear 

0 
o 0'.I 0'.2 

~/ (A/H) 
Figure 8 Dependence of the mechanical loss tangent on the shear 
deformation angle for diethylene glycol 
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Table 1 Basic experimental results for the liquids investigated here 

G' × 10 -6 
Liquids t (°C) (dyn cm-2)  tan 0 WK Wr, 

Ethylene glycol 24 0.91 0.27 12' 1 ° 46' 
Diethylene glycol 23 1.22 0.30 10' 0 ° 42' 
Triethylene glycol 21 1.27 0.27 9' 0 ° 59' 
Butyl alcohol 21 1.06 0.10 7' 0 ° 34' 
Octyl alcohol " 23 1.34 0.16 7' 0 ° 58' 
Cyclohexanol  24 1.12 0.30 9' 1 ° 06' 
Dimethylphthalate 23 0.97 0.10 12' 1 ° 50' 
Water  22 0.31 0.30 - - 

deformation angles. Curve A corresponds to the region of 
linear elasticity, curve B to the shear deformation 
angle equal to 34', and curve C to angle I°24 '. We see that 
the dependences are linear and converge to the origin, and 
that a quite definite value of the complex shear modulus 
corresponds to every shear angle. 

Figure 8 shows the dependence of the mechanical loss 
tangent on the shear deformation value. We can see that 
tan 0 increases with deformation angle, exhibiting an 
inflection point at a certain angle. Such a dependence of 
tan0 is characteristic of almost all the liquids 
investigated. The inflection point is also observed on this 
curve at the angle ~Fp. Figures 9 and I0 show the 
dependences of the real and imaginary shear moduli upon 
the shear deformation angle for butyl alcohol and 
dimethylphthalate. We see from Figure 9 that the shear 
modulus decreases more sharply for butyl alcohol (curve 
A) than for dimethylphthalate (curve B). In the latter case 
(Figure I0 ) the maximum imaginary shear modulus is 
observed at a much larger shear deformation angle 
(curve B). 

We have also measured the complex shear modulus of 
water. Unfortunately, we have not succeeded in studying 
its dependence on the deformation angle, because of the 
comparatively great volatility of water, which does not 
allow us to maintain the experimental conditions, viz. film 
thickness constant for a long period of time. 
Approximately similar results are obtained with all the 
liquids investigated in the present work. 

Table 1 presents basic experimental results for the 
liquids investigated. The first column gives the 
temperatures of the experiments. The next two columns 
give the values of the real shear modulus and of the 
mechanical loss tangent within the linear elasticity region. 
Then the values of critical angles ~ :  are given. The last 
column lists the angles ~Pp which vary within a fairly wide 
range. 

It should be stressed that, for all the liquids 
investigated, up to a certain limiting shear angle or a 
critical stress, both the real and the imaginary parts of the 
complex shear modulus are constant, viz. we have 
detected the region of linear complex elasticity (the 
generalized Hooke's law). Within this region, dissipative 
processes may be treated phenomenologically on the 
basis of the Boltzmann integro-differential equations of 
elastic after-effect. 

DISCUSSION 

The molecular aspects of these processes should probably 
be analogous to Maxwell relaxation, where, owing to the 
rearrangement of molecules, the rate of disappearance of 

elastic stress is proportional to the shear stress value. 
When passing beyond the 'elastic limit', the dissipative 
processes are accelerated, which accounts for an increase 
in the mechanical loss tangent. 

Apparently at large deformations the excess free energy 
of deformation is able to overcome the activation 
barriers, leading to other rearrangements of liquid 
molecules, thus increasing the intensity of dissipative 
processes. The consumption of the deformation energy in 
overcoming those barriers and subsequent energy 
dissipation explain the decrease in the effective dynamic 
shear modulus with increasing shear angle. 

All the liquids investigated have elongated molecules. 
We may suppose that the mutual arrangement and 
interactions of liquid molecules change significantly 
under the action of progressively increasing shear 
deformations. In particular, the elongated liquid 
molecules may become oriented along the direction of 
piezo-quartz oscillations. 

It should be stressed that the shear elasticity measured 
is connected with the low-frequency mechanism of 
viscoelastic relaxation, which was unknown before. In 
fact, if we were to measure the low-frequency tail of a 
high-frequency viscoelastic relaxation connected with the 
mechanism of thermal motion of separate liquid 
molecules, we would find the mechanical loss tangent to 
be much greater than unity. But it is clear from Table I 
that, for all the liquids investigated, tan 0< 1 and in 
several cases tan 0 ~ 1. 

The method of measuring the shear elasticity described 
in the present work may be applied to the examination of 
liquids within a wide range of varying viscosity. Thus we 
have additionally determined G' and tan 0 values for three 
polymeric liquids of very different viscosity 25. 

For poly(diethylsiloxane), having a viscosity of about 
260cS, the following data were obtained: G'= 
5.5 x 105 dyn cm -2, tan 0= 1.65. In the case of two liquid 
poly(methylsiloxanes) having viscosities of 52 000 and 
509 000 cS, the following results were obtained, 
respectively: G ' = 2 . 7 x l 0 6 d y n c m  -2, tan0=0.5,  and 
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Figure 9 Dependence of the real shear modulus on the shear 
deformation angle for butyl  alcohol (A) and dimcthylphthalate (B) 
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Dependence of the imaginary shear modulus on the shear 
deformation angle for butyl alcohol (A) and dimethylphthalate (B) 

G' = 6 . 7  x 106 dyn cm -2,  tan  0=0 ,15 .  
References 16 and  17 descr ibed  research into the 

viscous and  elastic p roper t i e s  of a n u m b e r  of  l iquid 
poly(methyls i loxanes)  within a wide f requency range.  

C o m p a r i s o n  of  the above  da t a  with the results  of the 
cited references gives a g o o d  qua l i ta t ive  agreement ,  if 
the differences between the l iquids examined and in their  
viscosit ies a re  cons idered .  Thus,  for example ,  accord ing  
to the  d a t a  16'17 for the  l iquid po ly(d imethyls i loxanes)  
having viscosity of  1000 000 cS, G'  = 1.7 × 106 dyn cm -2  
and t a n 0 = 0 . 6  at  the  f requency of  our  exper iment  
(73.5 kHz).  

In conclus ion ,  it will be po in ted  out  that ,  in the case of  
low-viscosi ty  l iquids  examined  in the present  work ,  the 
na ture  of  the viscous and  elastic re laxa t ion  is essent ial ly 
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different from that  of  polymers .  
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